Using a LightGBM Model
Model Overview
Training and Inference Approach
Model Metadata Data Product
Schema Configuration
{
"details": {
"data_product_type": "stored",
"fields": [
{
"name": "metadata",
"primary": false,
"optional": true,
"data_type": {
"column_type": "VARCHAR"
},
"classification": "internal"
},
{
"name": "model_path",
"primary": false,
"optional": true,
"data_type": {
"column_type": "VARCHAR"
},
"classification": "internal"
},
{
"name": "metadata_path",
"primary": false,
"optional": true,
"data_type": {
"column_type": "VARCHAR"
},
"classification": "internal"
},
{
"name": "version",
"primary": false,
"optional": true,
"data_type": {
"column_type": "VARCHAR"
},
"classification": "internal"
},
{
"name": "model_type",
"primary": false,
"optional": true,
"data_type": {
"column_type": "VARCHAR"
},
"classification": "internal"
},
{
"name": "created_at",
"primary": false,
"optional": true,
"data_type": {
"column_type": "TIMESTAMPTZ"
},
"classification": "internal"
}
]
}
}Builder Configuration
Metadata Output Format
Predictions Data Product
Schema Configuration
Builder Configuration
Prediction Output Format
date
performance_metric
model_version
_predicted_at
Feature Engineering and Model Optimization
Last updated